
Journal of Statistical Physics, Vol. 60, Nos. 5/6, 1990 

Flow through a Porous Membrane Simulated 
by Cellular Automata and by Finite Elements 

U. Brosa, 1 C. Kiittner, 2 and U. Werner 2 

Received March 22, 1990 

Computational results concerning incompressible viscous flow through two 
channels connected by a porous membrane are presented. The example is extra- 
ordinary for its four different types of boundary conditions that are necessary to 
make the problem complete. The solution is accomplished by two methods: by 
cellular automata and by finite elements. The numerical means to satisfy the 
boundary conditions are given for both methods. Overall agreement is achieved, 
but significant differences show up in details. 

KEY WORDS: Hydrodynamics; cellular automata; finite elements. 

1. POSING THE PROBLEM 

Viscous flow th rough  a pe rmeab le  m e m b r a n e  is i m p o r t a n t  in m a n y  techni-  
cal appl ica t ions .  Yet it does no t  seem to have been tho rough ly  studied. We 
a p p r o a c h  the p rob l em via s imula t ions  of a cer tain bounda ry -va lue  
problem.  

The g round  on which the p lay  takes  place is s taked  out  in Fig. 1. Let  
us begin with its lower part .  W e  have two channels  d ivided by a wall which 
is impene t rab le  except  at  its centra l  par t ,  where it is porous .  The  velocity 
field V thus is subject  to nonslip b o u n d a r y  condi t ions  

V(r)=0 (1) 
on the solid wall  (solid line in Fig. 1 ) a n d  to 

v~(r)=0 (2) 
on the m e m b r a n e  (do t ted  line). 

HLRZ c/o KFA, Postfach 1913, D-517 Jiilich, Federal Republic of Germany. 
z Universit/it Dortmund, FB Chemietechnik, LS Mechanische Verfahrenstechnik, Postfach 

500 500, D-46 Dortmund 50, Federal Republic of Germany. 

875 

0022-4715/90/0900-0875506.00/0 �9 1990 Plenum Publishing Corporation 
822/60/'5-6-23 



876 Brosa e t  al.  

/ 

J 

~ 4 P J  F 

r 

I . . . . .  I . .  

___ . f"  j 
~ - . - - . - m ~  ~ ~ . . . _ . 4 ~ .  ~ ~ ~ ~ ~ 

Fig. 1. Flow through a porous membrane computed with finite elements (lower part) and 
cellular automata (upper part) at Re = 500 and AVm,~ = 0.5. The aspect ratio is a = 4.5 and the 
size of the porous piece p = 0.75. The finite-element calculation took place on a rectangular 
grid of 112 elements with 410 nodes. The triangular grid for the cellular automaton had 
3094 x 794 nodes; Vm,x [cf. Eq. (4)] was 0.2 in lattice units. 

Here is an explanation of the somewhat  unusual boundary  condit ion 
(2): The membrane  stops the flow parallel to its surface, so that  only a 
perpendicular current may occur. This is based on the assumption that  the 
porous  membrane  is infinitely thin in an ideal sense. Thus, no  flow parallel 
to the membrane  can occur within it. The flow in the zone very close to the 
membrane  must  be perpendicular to it. 

It is supposed that  the two channels are shaped symmetrically, so that  
the dashed centerlines in Fig. 1 represent the symmetry  axes of the respec- 
tive channels. That  way it is implied that  the flow is symmetrical, too, an 
assumption which is justified at least as long as the flow is laminar. We 
assume that  along the centerlines slip boundary  conditions apply 

vl(r)  =0 (3) 

(dashed lines in Fig. 1), reducing the computa t ional  labor by a factor of 
two. 

The boundary  conditions valid at the open ends left and right in Fig. 1 
have to be defined. Let us assume a Cartesian coordinate  system (x, y)  so 
that  its origin lies in the leftmost point  of the central wall and that its x 
axis is parallel to the walls. The layout  as depicted in Fig. 1 extends 
laterally from y = - l /2  to y = I/2. Its length is given by a .  l (a indicating 
aspect ratio). We stipulate 

~exV~ax4y(l- y)/l 2 for 0 < y < / / 2  
V ( x = O ,  

Y ) = l e x v ~ , , 4 y ( - y - - l ) / l  2 for --l/2 < y<O 
(4) 



F low th rough  a Porous Membrane 877 

for the left-hand-side open end--the upstream inlet--and 

Iex(/)max + A/)m~x) 4 y ( l -  y)/l  2 for 0 < y < l/2 
u  y ) =  ex(Vm~x__A/)m~x)4y(__y__l)/12 for - l / 2  < y<O 

(5) 

for the right-hand side--the downstream end. As % is to denote the unit 
vector along the x axis, we have Poiseuille profiles everywhere. This 
boundary condition is justified by the fact that the inlet and outlet cross 
sections are far away from the porous part of the channels, so that the flow 
at inlet and outlet is not influenced by the events near the permeable wall. 

The parameters Vmax and Avmax are decisive for everything that is to 
come. Vmax determines the Reynolds number 

Re =/)max" 2I/v (6) 

with v as kinematic viscosity. By A1)rnax/Vma x w e  measure the percentage of 
liquid passing through the porous membrane. 

The dynamical foundation is, of course, the Navier-Stokes equation 

O,v = -(VV)V - v e / p  - vV • V x V (7) 

constrained by 

v v = 0  (8) 

for Newtonian incompressible fluids with density p and pressure P in two 
dimensions. Since we aim at stationary flows, the time derivative of the 
velocity field ~?tV could be left out. However, the finite-element method 
presented here uses the time-dependent Navier-Stokes equation, and in the 
method of cellular automata, a time-dependent technique is applied, too. 

For comparisons we use dimensionless units, based on l as unit of 
length and /?max as unit of velocity. Then the geometry of the device shown 
in Fig. 1 is fixed by the aspect ratio a and the length p of the porous piece, 
and the dynamical quantities are characterized by the Reynolds number Re 
and the throughput AVmax. 

The lower part of Fig. 1 shows the geometry employed in our calcula- 
tions with finite elements. The upper part displays the layout for the 
cellular automata. Here the centerlines are shifted somewhat backward and 
forward, so that the boundary conditions (4) and (5) apply to skew open 
ends. This change is motivated by the triangular lattice on which the 
cellular automata operate. The modification simplifies programming, but 
does not, we believe, alter the relevant results. 



878 Brosa et  aL 

2. SOLUTION BY CELLULAR A U T O M A T A  

That one can obtain solutions of the Navier-Stokes equation by 
cellular automata if one takes a triangular lattice has been clear since the 
publication of ref. 1. During the past few years several papers have 
appeared which contain worked examples and comparisons with analyti- 
cally available solutions. We have profitted most from refs. 2 and 3. 
Various levels of sophistication exist that can increase the effectiveness by 
a factor of three (see, e.g., ref. 4). However, as will become clear in Sec- 
tion 5, it is of prime importance that the implementation of the cellular 
automata be as elementary as possible. Hence, all further developments will 
be based on the extremely simplified algorithms presented in ref. 5. In that 
paper, only the implementation of the interior dynamics was detailed. 
Therefore, we must show now how the various boundary conditions 
introduced in Section 1 can be realized. 

The gist of the implementation as utilized in ref. 5 is exhibited in 
Fig. 2: In every node of the triangular lattice, there may be particles staying 
(note the 0) or leaving in one of six directions. The presence of such 
particles is indicated by setting the respectives bits in a byte. 

The unit of length is here the next-neighbor distance, and that of time 
is one complete update of the field. 

The update proceeds in two phases, stream and collision. In the colli- 

 llltlil 
7 6 5 4 3 2 1 0  

, . ,  

6 

L / 
4 

1 

/ 

3 
Fig. 2. The diagram of directions for the implementation of cellular automata as used in this 
work. Related to the seven directions are the seven low-order bits in a byte which is shown 
in the upper part of the figure. Bit 7 is used to ensure conservation of angular momentum. (5) 



Flow through a Porous Membrane 879 

sion phase, there is no interaction among the nodes; the bits are reshuffled 
for every node separately. We do this with a look-up table. (5~ Now collision 
means interaction between mobile particles. A boundary condition, in com- 
parison, can be construed as interaction between one mobile particle and 
another fixed on the wall. Hence, the only difference between coding colli- 
sions and the boundary conditions is that a different look-up table has to 
be applied for the particles hitting the border. Since in the present example 
we have four types of boundary conditions, the construction of the various 
look-up tables can be difficult and may lead to well-concealed errors. 
Therefore it might be useful to know the following algorithms. 

Let us start with boundary condition (2). In the language of cellular 
automata, it is equivalent to specular reflections at the vertical plane 
depicted in Fig. 2 by the dashed line. Hence an arriving 1 particle becomes 
a leaving 6 particle, an arriving 2 leaves as a 5, and so forth. The general 
rule is 

incoming IB moves out as 7 - IB (9) 

Hence, take the least significant byte of an integer II (representing the 
incoming particles) and check if the bit IB is set. If it is set, flag the bit 
7 -  IB in the integer IO (describing the outgoing particles). The entire 
algorithm might look like this: 

D O 3 I I = 0 , 2 5 5  
IO = IAND(II, 129) 
DO 1 I B =  1, 6 (10) 

1 IF (BTEST(II, IB)) IO = IOR(IO, ISHFT(1, 7 -  IB)) 
3 IREV(II) = IO 

We use extended Fortran statements valid on Crays, IBM mainframes, 
with Microsoft Fortran and others; for, example BTEST(II, IB) checks if in 
the integer II the bit IB is set. The first line in (10) cranks through all 
possible input configurations. In the second line the zeroth and let seventh 
bits are captured from II and written on IO, as they belong to states that 
cannot move. The third and fourth lines are to account for the moving par- 
ticles. The use of the bit-adding IOR is important because several particles 
may coexist in a node. If the reshuffle for one of them was determined in 
a previous pass through the DO 3 loop, this must not be destroyed in the 
present pass. The last line of the code establishes the desired look-up table 
for specular reflections at the vertical. 

Specular reflection at the horizontal [see boundary condition (3)] is 
slightly more complicated to code. From Fig. 2 we find 

4 - I B  if I B = 1 , 2 , 3  
incoming IB moves out as 1 0 -  IB if IB =4,  5, 6 (11) 



880 Brosa et  al.  

The code is almost the same as in (10). Only the interior DO 1 loop has 
to be split. 

For the nonslip boundary condition (1) it takes backward-reflection 
or inversion rules/z) They can be described by 

incoming IB moves out as mod(IB + 2, 6) + 1 (12) 

so that in (10)just the 7 -  IB has to be replaced by the expression with the 
modulo function. 

Maintaining the correct boundary conditions at the open ends 
requires a different approach. It is closely related to the distribution of 
suitable initial values. If a velocity field V is given, it is in general not 
possible to construct a cellular automaton representing these velocities at 
every node. Only after averaging over many nodes (typically 400) may we 
obtain the desired velocities as mean values. Hence, we must trim the nodes 
in a stochastic way. A convenient formula for the probabilities (6) is 

pi= l+~e;.V (13) 

which holds if p is much smaller than Z The e~ are the unit vectors shown 
in Fig. 2. One verifies readily that the sum over the Pi, i = 0, 1, 2,..., 6, gives 
the density p, while V is recovered from the mean over all e;. With this we 
can build a suitable initial distribution by a Monte Carlo algorithm: Let 
the velocity field be represented by the integer field IV(IX, IY), where 
(IX, IY) signifies the discretized (x, y). Get the deterministic velocity 
V(x, y) for the point (IX, IY). Compute the probabilities p~ from Eq. (13). 
Flag the ith bit in IV(IX, IY) if a uniformly distributed random number is 
smaller than p,.. 

The same procedure may be used for the computation of velocity 
profiles as the open ends to satisfy the boundary conditions (4) and (5). 
This is described with more details in ref. 7; see also ref. 8 for the solution 
of a similar problem. 

We finish the task demanded in Section 1 by solving a noncompatible 
initial value problem. That is, we put the boundary conditions (1)-(5) into 
force and distribute initial values according to (4) all over the channels, 
except at their downstream ends. Then particles get jammed for an initial 
period in the lower channel, while they become rarefied in the upper part 
of the device. Later, the flux through the membrane increases and the jam 
is released. 

This process is shown in Fig. 3. Refer first to the lines distinguished by 
the asterisks. We observe their divergence for times between 0 and 1600; 
see the drop of density in the upper channel and its increase in the lower 



Flow through a Porous Membrane 881 

1 ~ 1  I I I 

& sit l tower 
upper 

v m x  : O. 4 

0.9 ' ,  . ,  ~ 5 ~ - ~ - §  + - -  

" +--§ time 
0 . 8  , , , 

0 1000 2000 3000 4000 
Fig. 3. The jam of particles in the downstream half of the two-channel device and its sub- 
sequent release. We use diagrams like this to find the time at which stationarity has been 
reached. 

one. Then the lines converge and reunite at time 3200. So at least for 
velocities around 0.2 we find reasonable convergence and can thus solve 
the stationary problem. 

The behavior is different for a bigger /)max' Again we notice the initial 
divergence (see the lines marked by the crosses in Fig. 3), but in this case 
convergence is never attained, even at times much greater than those 
shown. The reason is clear: The Mach number of the cellular automata  is 
about  one. Yet even for velocities as small as 0.4, compressibility effects 
show up. The problem with this kind of compressibility, however, is that 
it has nothing in common with the compressibility of a real liquid. ~ There- 
fore, we must keep all velocities well below 0.4. 

But also too small velocities are detrimental, ~ as one can see in Fig. 4. 
In its upper part, it displays results from a calculation with Vmax = 0.05: The 
deterministic motion is drowned in fluctuations. For stationary flow one 
can somewhat improve on that by averaging over flow fields at different 
instances. This is what was done to obtain the field shown in the lower part  
of Fig. 4. 

Hence, for calculations with ceilular automata,  changes in Reynolds 
number are practically equivalent with changes of lattice size. We can 
quantify this with Eq. (6) when we substitute, instead of l, x/3/2.Ny, Ny 
being the size of the grid in the lateral direction. With various collision 
rules one can change the viscosity v from 0.5 to 1.0 (in the present case v 
is 0.55(5)). Vrnax can vary, as was discussed above, from 0.1 to 0.3. This 
together gives less freedom than one order of magnitude. But also the range 



882 Brosa e t  al.  

~ .  i / / / / 1 \ -  
"-./ 

x ~ . . . . . .  4 
. . / ~'x 

/ 

\ 

r . . . .  t . . . .  [ . . . .  

/ / i . . . . . .  / 

Fig. 4. Flow fields according to cellular automata at Re = 10. The upper picture was taken 
from a single instance time = 1000, while the lower one emerged from averaging over flow 
fields at time = 100, 120,..., 2000. Here a = 2.7 and p = 0.48. 

of lat t ice sizes is l imited. Ny must  not  be much  less than  100, as otherwise 
the statist ics becomes poor .  O n  the other  hand,  Ny canno t  be much  bigger  
than  1000 due to finite compu te r  m e m o r y  However ,  for the present  
p rob lem compu ta t i ons  with Reynolds  numbers  between 10 and 1000 were 
performed,  which should  have a stat ist ical  accuracy  bet ter  than  10%. 

3. S O L U T I O N  BY FINITE E L E M E N T S  

The me thod  of finite elements has been proved  over  the years  to be an 
adequa te  me thod  for solving fluid flow problems.  (~~ Therefore  we apply  it 
to our  p rob l em of flow in a channel  with porous  walls. 

Since the p rob lem is two-dimensional ,  the s t ream func t ion-vor t i c i ty  
fo rmula t ion  of  the N a v i e r - S t o k e s  equa t ion  is used, thus avoid ing  the 
explicit  ca lcula t ion  of pressure.  This leads to the fol lowing two equat ions :  

W21] / - t -  (2) = 0 (14) 

8 0 )  8[ / /  80,) 8[/g - - 8 ( ' 0 _ _ • V 2 ( , 0 =  0 

8-7 + 8 y ' S x  8 x S y  
(15) 



Flow through a Porous Membrane 883 

with ~ as the stream function defined by 

o0 O0 and vy - (16) 
v x -  8y 8x 

and ~o as the vorticity. The two equations are solved simultaneously, and 
boundary conditions are required for both. 

The method used for solving these equations is based on a computer 
program developed by Reiners.(~l) 

As one can see, the time-dependent version of the formulation is 
required. This facilitates the implementation of boundary conditions at the 
permeable wall, which in part are calculated with the help of a time itera- 
tion. 

The equations are solved on a finite-element grid that is formed by 
two axisymmetric parts, each one consisting of 56 elements. The two parts 
touch at the permeable wall. The elements are of rectangular shape, but of 
isoparametric type. The interpolation functions for both the stream func- 
tion and the vorticity are quadric, i.e., of second order with two variables. 

The boundary conditions are as follows, first for the stream function. 
The fluid velocities at inlet and outlet cross sections [boundary condi- 

tions (4) and (5)] are prescribed by the parabolic profile of the laminar 
flow in a channel. The maximal velocities must be set according to the 
mass balance, which is based on the two inflowing streams (characterized 
by Vmax) and the portion of flow that passes through the permeable wall 
(Avmax). A cubic profile of the stream function is calculated from those 
velocities. The stream function on the symmetry axes [boundary condition 
(3)] and on the solid walls [boundary condition (1)] is set to constant 
values. 

The vorticity on the symmetry axes is set to zero and changes as a 
linear function along the inlet and outlet boundaries. On the permeable 
and solid walls the vorticity boundary conditions are calculated from a 
Taylor series of the stream function, (~2) supposing that the nonslip condi- 
tion is valid on both types of wall. At the permeable wall, a velocity 
perpendicular to the wall does exist. 

Initial values for the vorticity--resulting from the linear distribution 
with respect to the y axis of the undisturbed channel flow--are given, and 
with them the stream function is calculated from Eq. (14). Using the stream 
function, we obtain the values for the time derivative of the vorficity using 
Eq. (15). The vorticity itself is calculated by multiplying the derivative with 
a discrete time s tep--a  point in connection with this will be noted below. 
With the new vorticity we get the new stream function. The time iteration 
goes on until two vorticities differ by less than a certain limit. This is 
considered to be the steady state. 



884 Brosa et  al.  

Since the whole finite-element domain consists of two parts, a coupling 
condition for the stream function at the permeable wall is employed at each 
time step: the value of the stream function at the permeable wall is 
averaged from the values of the upper and the lower domains. 

The program increases the flow rate through the permeable wall in 
steps of 1% of the inflow, at each step reaching the steady state. Difficulties 
with the stability of the algorithm occur when the calculation goes on in 
steps that are too large of flow rate through the permeable wall. 

There are two other phenomena which can lead to instabilities. The 
first concerns the size of the grid which determines the size of the matrices 
that are used in the course of the calculations. If the matrices are too big, 
they cannot be inverted with the Gauss algorithm (as is done now), but 
show up as singular. This is certainly a numerical problem, for the sort of 
matrices does not change essentially when the grid becomes bigger. There- 
fore, the finite-element method in our case is limited to rather small grids 
at present. 

A second problem is the size of the time steps. The higher the 
Reynolds number of the flow, the smaller the time steps must be. 
Nevertheless, it can happen that suddenly, at a certain flow rate through 
the wall, the calculations stop due to numerical overflow: the algorithm 
becomes unstable. This problem might be overcome by averaging the vor- 
ticity values of the actual and of the preceding time step. The time steps can 
then be chosen much longer, but this procedure has not yet been performed 
in the calculations presented in this paper. 

4. C O M P A R I S O N  OF RESULTS 

When we compare finite-element results with those from cellular 
automata, our main result is a negative one. Clearly, if Avma x >0,  some 
liquid must flow through the membrane. This induces certain global 
features which are reproduced by both computational methods (see Fig. 1). 
However, details of the distribution of flux over the membrane are impor- 
tant. Here our two methods give, for Reynolds numbers well above 100, 
opposite results. According to cellular automata, the main flux passes the 
membrane close to its downstream edge. The finite elements, in contrast, 
suggest that the membrane is strained mostly in its upstream part (see 
Fig. 1 ). 

The reason for the discrepancy is not clear. Both codes were carefully 
tested and applied to nontrivial examples (see, e.g., ref. 7). Differences in 
the implementation of boundary conditions based on the two very different 
methods may be responsible. In addition, it is possible that the flow at 
higher Reynolds numbers (Re > 500) is no longer laminar, setting limits to 



Flow through a Porous Membrane 885 

the finite-element method, which assumes laminar flow. At Reynolds num- 
ber bigger than 500, the mentioned instabilities also occur due to the size 
of the time steps. This might be another hint on the flow changing its 
characteristics in this region of Reynolds numbers. 

We are not aware of experimental data to decide the conflict. 
The discrepancy is sizable only for Reynolds numbers well above 100. 

In the opposite case we find by both methods a more uniform flow through 
the porous material, as shown in Fig. 4. The differences are then negligible 
as compared with the inherent inaccuracies of our two methods. 

5. T H E  T A B L E  O F  U S E F U L N E S S  

Another kind of result derives from our immediate experience with dif- 
ferent computational schemes for hydrodynamics, viz. cellular 
automata, (5'7~ finite elements, and spectral methods, (13' 14) from which we 
derive a "table of usefulness." We hope that this table might serve as a first 
orientation for those wishing to enter the field. 

We base our comparison on four criteria: stability, flexibility, 
efficiency, and simplicity. 

When a numerical instability, i.e., amplification of rounding errors, 
occurs, a supercomputer is not more worth than a pocket calculator. Hence 
stability is prime. 

A property very relevant for practical problems is flexibility. By this 
we mean the adaptability to different boundary conditions. For example, a 
code which permits the simulation of a turbulent boundary layer over a flat 
plate is fine, but a code by which one can do the same thing with a realistic 
airfoil is better. 

Next comes efficiency. It is defined as the ratio of accuracy over com- 
putational time. Hence, for many problems with partial differential equa- 
tions, higher efficiency just allows for more accurate solutions. In 
hydrodynamics, changes in efficiency can cause qualititive changes: With a 
more efficient code we can do computations with better resolution. On the 
other hand, fluids at higher velocities develop structures of increasing com- 
plexity, especially in turbulence. For complex structures we need high 
resolution. Therefore, when we have only an inefficient code, we cannot 
treat turbulence. 

The fourth criterion is simplicity. According to common experience, 
the frequency of errors increases dramatically with the complexity of the 
code. A wrong program, however, has little value even if it outperforms 
everything else by speed. 

Except for stability, the importance of the criteria depends on the 
peculiarities of the problem at hand (see Table I). Each of the numerical 



886 

Table I. 

Brosa e t  al.  

Strengths and Weaknesses of Three Numerical 
Methods in Hydrodynamics 

Algorithm Stability Flexibi l i ty  Eff iciency Simplicity 

Cellular automata + + - - + + 
Finite elements - + - + 
Spectral methods - - + - 

methods is good ( + )  with respect to some aspects, but bad ( - )  or even 
dreadful ( - - )  with respect to others. "Dreadful" means that there exists 
at present no remedy to cure the evil. 

Due to their simple implementation and excellent stability, cellular 
automata  seem to be valuable to test other more effective but also more 
involved and critical numerical methods. On the other hand, the efficiency 
of cellular automata  is so low that there seems to be no chance to use them 
for the simulation of high-Reynolds-number flow, especially for 3D tur- 
bulence. (Ref. 15 does not contain a counterexample, as just the slackening 
of a 2D velocity field was described.) Likewise, due to the limitations 
discussed in Section 2, cellular automata  are not useful for flow at very low 
Reynolds numbers. 

Finite elements are already more difficult to code, but their main 
advantage is a better efficiency combined with excellent flexibility. For  
example, to obtain the results shown in Fig. 1 took on a Cray Y M P  1 hr 
per processor when cellular automata  were used, while with finite elements 
less then 5 min had to be spent. The finite-element method is somewhat 
imperilled by instabilities, but we think that these jeopardies can be tamed. 

The spectral methods seem to be very much on the negative side. 
Nevertheless, due to their high efficiency, they furnish the only approach to 
real turbulence simulations. (16"1v'13) 

The three numerical methods may be ranked according to continuity: 
The velocity field of cellular automata  can be thought as a superposition 
of 6-functions. The fields represented by finite elements are at least once 
differentiable, and those of the spectral methods are perfectly smooth. It is 
obvious that this is the reason for the decrease of flexibility as well as for 
the increase of efficiency: With the cellular au tomata  we follow the chaotic 
motion of single particles, while in reality small pieces of a fluid have only 
few degrees of freedom. 



Flow through a Porous Membrane 887 

A C K N O W L E D G M E N T S  

W e  t h a n k  M. K r e m e r  a n d  D. Stauffer for sugges t ions  a n d  suppor t .  
T h e  w o r k  w o u l d  p r o b a b l y  neve r  have  been  accompl i shed  w i t h o u t  J. A. M. S. 

D u a r t e ' s  exper ience  c o n c e r n i n g  in i t ia l  va lues  a n d  b o u n d a r y  c o n d i t i o n s  in  
ce l lu lar  a u t o m a t a .  

R E F E R E N C E S  

1. U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev. Lett. 56:1505 (1986). 
2. D. d'Humieres and P. Lallemand, Complex Systems 1:599 (1987). 
3. H. A. Lira, Phys. Rev. A 40:968 (1989); H. A. Lim, Complex Systems 2:45 (1988). 
4. F. Hayot, M. Mandal, and P. Sadayappan, 3. Comp. Phys. 80:277 (1989). 
5. U. Brosa and D. Stauffer, J. Stat. Phys. 57:399 (1989). 
6. S. Wolfram, ed., Theory and Applications of  Cellular Automata (World Scientific, 

Singapore, 1986). 
7. J. A. M. S. Duarte and U. Brosa, J. Stat. Phys. 59:501 (1990). 
8. F. Hayot and M. Raj Lakshmi, Physiea D 40:415 (1989). 
9. J. P. Dahlburg, D. Montgomery, and G. D. Doolen, Phys. Rev. A 36:2471 (1987). 

10. T. J. Zhung, Finite Element Analysis in Fluid Dynamics (McGraw-Hill, New York, 1978). 
11. U. Reiners, Simulation laminater Str6mung in Kan~ilen mit permeablen W~inden, Disser- 

tation, Universitg.t Dortmund (1989). 
12. P. J. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque, 1972). 
13. L. Boberg and U. Brosa, Z. Naturforsch. 43a:697 (1988). 
14. U. Brosa, J. Stat. Phys. 55:1303 (1989). 
15. S. Succi, P. Santangelo, and R. Benzi, Phys. Rev. Lett. 60:2738 (1988). 
16. J. Kim, P. Moin, and R. Moser, J. Fluid Mech. 177:133 (1987). 
17. E. Laurien and L. Kleiser, J. Fluid Mech. 199:403 (1989). 

Communicated by D. Stauffer 


